Stochastic curvature flows: asymptotic derivation, level set formulation and numerical experiments
نویسندگان
چکیده
منابع مشابه
Numerical Analysis Level-Set method and stability condition for curvature-driven flows
We consider models for the simulation of curvature-driven incompressible bifluid flows, where the surface tension term is discretized explicitly. From this formulation a numerical stability condition arises for which we present a new theoretical estimation for low and medium Reynolds numbers. We illustrate our analysis with numerical simulations of microfluidic flows using Level Set method. Fin...
متن کاملLevel-Set method and stability condition for curvature-driven flows
We consider models for the simulation of curvature-driven incompressible bifluid flows, where the surface tension term is discretized explicitly. From this formulation a numerical stability condition arises for which we present a new theoretical estimation for low and medium Reynolds numbers. We illustrate our analysis with numerical simulations of microfluidic flows using Level Set method. Fin...
متن کاملA level set approach to anisotropic flows with curvature regularization
Modeling and simulation of faceting effects on surfaces are topics of growing importance in modern nanotechnology. Such effects pose various theoretical and computational challenges, since they are caused by non-convex surface energies, which lead to ill-posed evolution equations for the surfaces. In order to overcome the ill-posedness, regularization of the energy by a curvature-dependent term...
متن کاملLevel set approach for fractional mean curvature flows
This paper is concerned with the study of a geometric flow whose law involves a singular integral operator. This operator is used to define a non-local mean curvature of a set. Moreover the associated flow appears in two important applications: dislocation dynamics and phasefield theory for fractional reaction-diffusion equations. It is defined by using the level set method. The main results of...
متن کاملAlgorithms for stochastic approximations of curvature flows
Curvature flows have been extensively considered from a deterministic point of view. They have been shown to be useful for a number of applications including crystal growth, flame propagation, and computer vision. In some previous work [1], we have described a random particle system, evolving on the discretized unit circle, whose profile converges toward the Gauss-Minkowsky transformation of so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Interfaces and Free Boundaries
سال: 2001
ISSN: 1463-9963
DOI: 10.4171/ifb/41